Using global invariant manifolds to understand metastability in Burgers equation with small viscosity
نویسندگان
چکیده
The large-time behavior of solutions to Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L2 space, the selfsimilar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this “metastable” manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave. ∗email: Margaret [email protected]; The majority of this work was done while MB was affiliated with the Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK †email: [email protected]
منابع مشابه
Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity
The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar dif...
متن کاملDiffusive N-Waves and Metastability in the Burgers Equation
We study the effect of viscosity on the large time behavior of the viscous Burgers equation by using a transformed version of Burgers (in self-similar variables) that captures efficiently the mechanism of transition to the asymptotic states and allows us to estimate the time of evolution from an N-wave to the final stage of a diffusion wave. Then we construct certain special solutions of diffus...
متن کاملGlobal Dissipativity and Inertial Manifolds for Diffusive Burgers Equations with Low-Wavenumber Instability
Global well-posedness, existence of globally absorbing sets and existence of inertial manifolds is investigated for a class of diffusive Burgers equations. The class includes diffusive Burgers equation with nontrivial forcing, the Burgers-Sivashinsky equation and the QuasiStedy equation of cellular flames. The global dissipativity is proven in 2D for periodic boundary conditions. For the proof ...
متن کاملFractal Model for Coarse-Grained Nonlinear Partial Differential Equations
Spatially coarse-grained (or effective) versions of nonlinear partial differential equations must be closed with a model for the unresolved small scales. For systems that are known to display fractal scaling, we propose a model based on synthetically generating a scale-invariant field at small scales using fractal interpolation, and then analytically evaluating its effects on the large, resolve...
متن کاملBurgers Equation with Multiplicative Noise: Dynamics and Stability
The main objective of this article is to analyse the dynamics of Burgers equation on the unit interval, driven by multiplicative white noise. It is shown that the solution field of the stochastic Burgers equation generates a smooth perfect and locally compacting cocycle on the energy space L2([0, 1],R). Using multiplicative ergodic theory techniques, we compute the discrete non-random Lyapunov ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008